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Direct Progesterone Receptor and Indirect Androgen
Receptor Interactions with the Kallikrein-Related
Peptidase 4 Gene Promoter in Breast and
Prostate Cancer

John Lai, Stephen A. Myers, Mitchell G. Lawrence, Dimitri M. Odorico, and Judith A. Clements

Hormone Dependent Cancer Program, School of Life Sciences and Institute of Health and Biomedical Innovation,
Queensland University of Technology, Brisbane, Queensland, Australia

Abstract
Kallikrein 4 (KLK4) is a member of the human KLK

gene family of serine proteases, many of which

are implicated in hormone-dependent cancers.

Like other KLKs, such as KLK3/PSA and KLK2,

KLK4 gene expression is also regulated by steroid

hormones in hormone-dependent cancers, although

the transcriptional mechanisms are ill defined. Here,

we have investigated the mechanisms mediating the

hormonal regulation of KLK4 in breast (T47D) and

prostate (LNCaP and 22Rv1) cancer cells. We have

shown that KLK4 is only expressed in breast and

prostate cancers that express the progesterone receptor

(PR) and androgen receptor (AR), respectively.

Expression analysis in PR- and AR-positive cells

showed that the two predominant KLK4 variants that

use either TIS1 or TIS2a/b are both up-regulated by

progesterone in T47D cells and androgens in LNCaP

cells. Two putative hormone response elements,

K4.pPRE and K4.pARE at �2419 bp and �1005 bp,
respectively, were identified in silico. Electrophoretic

mobility shift assays and luciferase reporter experiments

suggest that neither K4.pARE nor f2.8 kb of the

KLK4 promoter interacts directly with the AR to

mediate KLK4 expression in LNCaP and 22Rv1 cells.

However, we have shown that K4.pPRE interacts

directly with the PR to up-regulate KLK4 gene

expression in T47D cells. Further, chromatin

immunoprecipitation experiments showed a time-

dependent recruitment of the PR to the KLK4 promoter

(�2496 to �2283), which harbors K4.pPRE. This is
the first study to show that progesterone-regulated

KLK4 expression in T47D cells is mediated partly by a

hormone response element (K4.pPRE) at �2419 bp.
(Mol Cancer Res 2009;7(1):129–41)

Introduction
Breast cancer and prostate cancer are significant diseases

in Western countries, accounting for f30% of all newly diag-

nosed cancers for 2006 (1). Although the etiology of both

diseases is not fully understood, there are some similarities in

the epidemiology and pathogenesis between breast and prostate

cancers. For example, the incidence of breast and prostate

cancers are reported to be higher in Caucasians and African

Americans when compared with women and men with Asian

ancestry (2, 3). However, the most significant association is

that in a majority of cases, both breast and prostate cancers

are regulated by hormones in the initial stages of disease and

current therapeutic options involve targeting the estrogen

receptor (ER) and androgen receptor (AR) signaling axes,

respectively (4, 5). Consequently, much of the research into

breast and prostate cancers has focused on genes that are

involved in the estrogen and androgen signaling pathways.

However, despite extensive research efforts, the precise

molecular events leading to the initiation and progression of

these diseases are still largely unknown.

Steroid hormones, such as estrogen, progesterone, and

androgens, mediate their cellular effects through their cognate

receptors. Upon ligand binding, steroid receptors participate in

a sequence of events that ultimately result in the translocation

of the receptor into the cell nucleus whereupon it binds to

hormone response elements (HRE) in the promoters of target

genes to initiate transcription. One such family of hormone

target genes that are regulated by steroid hormones in prostatic,

breast, and endometrial cells, and which are thought to play a

role in the progression to neoplasia, are the tissue kallikrein-

related (KLK) peptidases (6, 7). The KLKs are a multigene

family of serine proteases that are involved in the posttrans-

lational processing of polypeptide precursors to their biologi-

cally active forms (6, 7), a function that is central to a number

of biological events. Additionally, KLKs can activate proteases

such as urokinase-type plasminogen activator and cleave

structural proteins of the extracellular matrix (6, 7), which are

critical events in tumorigenesis, invasion, and metastasis.
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KLK4 is a relatively recently described KLK family member

(8-11). Although the porcine and mouse orthologue of KLK4,

enamel matrix serine protease-1 (EMSP-1), plays a role in tooth

development by degrading amelogenin, which is the predom-

inant protein in the enamel matrix of developing teeth (12),

the physiologic role of KLK4 remains to be established. By

analogy, KLK4 may have similar extracellular matrix remodel-

ing properties and potentially facilitate in local invasion and/or

metastatic progression of carcinomas. In support of this notion,

KLK4 can activate pro-PSA and single-chain urokinase-type

plasminogen activator (13) and recombinant KLK4 also

degrades prostatic acid phosphatase (13) and members of the

insulin-like growth factor binding protein family (14). Collec-

tively, this suggests that KLK4 may have an important role

in prostate tumorigenesis.

At the mRNA level, KLK4 has been shown to be up-

regulated by androgens, estradiol, progesterone, and glucocor-

ticoids in prostate cancer cells (10, 15) and by the synthetic

progestin (norgestrel) in BT-474 breast cancer cells (16).

Further, KLK4 protein levels are increased by as much as 4-fold

in response to estradiol in ovarian cancer cells (17) and by

40-fold in response to estradiol and progesterone in endometrial

cancer cells (18). However, functional HREs have yet to be

characterized for the KLK4 promoter, although putative AREs

have been predicted using in silico modeling (11). In fact,

functional HREs mediating hormone-induced gene expression

of the KLKs have only been identified in the promoter and

enhancers for the KLK2 and KLK3 (prostate-specific antigen,

PSA) genes (19-27).

To date, the promoter of the KLK4 gene has not been well

defined with two groups mapping alternative transcription

initiation sites (TIS) using 5¶-random amplification of comple-

mentary ends (5¶-RACE; refs. 9, 15). Initially, the full-length

KLK4 transcript was reported to be derived from the classic

five exons (10). However, subsequent studies have identified a

variant transcript that begins in exon 2 (15).

The studies reported here were designed to further

characterize the hormonal gene regulation of KLK4 in breast

cancer (T47D) and prostate (LNCaP and 22RV1) cancer cells.

We confirm that the predominantly used TIS for KLK4 gene

expression in breast and prostate cancer cells is similar to that

previously reported in exon 2 (15). We have shown that the

KLK4 promoter region encompassing 2.8 kb from this TIS is

not responsible for the observed androgen regulation of the

KLK4 gene expression in LNCaP and 22Rv1 prostate cancer

cells. However, our analysis suggests that a progesterone-

responsive region in this 2.8 kb of the KLK4 promoter regu-

lates progesterone-induced KLK4 gene expression in the T47D

breast cancer cells.

Results
Hormonal Regulation of KLK4 Gene Expression in Breast
and Prostate Cancer Cells

The association of KLK4 gene expression with progesterone

receptor (PR) and AR status was assessed for four breast

and seven prostate cell lines using reverse transcription-PCR

(RT-PCR). Figure 1A shows that KLK4 is expressed in one

breast (T47D) and three prostate (LNCaP, 22Rv1, and MDA-

PCa-2b) cell lines. Importantly, KLK4 was found to be only

expressed in PR-positive breast and AR-positive prostate cells

(Fig. 1A). Consequently, the progesterone and androgen

regulation of KLK4 was further investigated using quantitative

RT-PCR in T47D and LNCaP cells, respectively.

Treatment of T47D cells with 10 nmol/L of progesterone over

24 hours resulted in a 1.38-fold (P < 0.01) increase in KLK4

mRNA and a 1.65-fold (P < 0.01) response for HSD11B2, a

prototypical progesterone-regulated gene (Fig. 1B). Further, the

attenuation of KLK4 and HSD11B2 response by the PR

antagonist RU486 shows that regulation of KLK4 and HSD11B2

by progesterone was mediated through the PR (Fig. 1B).

In LNCaP cells, KLK4 expression was up-regulated by 3.2-

fold (P = 0.03) after the cells were treated for 24 hours with

1 nmol/L of the synthetic androgen, R1881, when compared

with the vehicle control (Fig. 1C). Androgen-induced up-

regulation of KLK4 expression was attenuated when cells were

treated with 1 Amol/L bicalutamide, an AR antagonist, which

suggests that the observed regulation is mediated through the

AR (Fig. 1B). The KLK4 response to androgen F antagonist

was similar to the PSA/KLK3 gene (positive control for

androgen regulation), although PSA had a much higher

response to androgen treatment (f8-fold, P < 0.05; Fig. 1C).

To further validate the hormonal regulation of KLK4 gene

expression, quantitative RT-PCR (RT-qPCR) was also carried

out on T47D and LNCaP cells that were cultured in hormone-

depleted medium. After maintaining both T47D and LNCaP

cells in medium containing 10% charcoal-stripped FCS for

4 days, KLK4 expression was found to be down-regulated by

4.2-fold (P = 0.01) and 2.4-fold (P < 0.01), respectively,

compared with cells grown in regular FCS (Fig. 1D and E).

Identification of the TIS for KLK4 in Breast Cancer and
Prostate Cancer Cells

To identify potential HREs in the KLK4 promoter, it was

essential to first map the location of the KLK4 TIS for breast

cancer (T47D) and prostate cancer (LNCaP) cells. Using 5¶-
RLM-RACE, a KLK4 TIS in LNCaP cells (TIS2b) was found

downstream of the originally reported TIS1 (9) and 43 bp

upstream of the KLK4 exon 2 ATG. In T47D cells, the TIS

(TIS2a) was 35 bp longer and situated 78 bp upstream of the

exon 2 ATG (Fig. 2A-C). Transcripts generated from these TISs

would be derived from just four exons and thus are shorter than

the published full-length transcript (Fig. 2D) but similar to that

reported in LNCaP cells (15). The relative expression of

transcripts arising from each TIS, as well as the hormonal

regulation of these variants in T47D and LNCaP cells, was

assessed using RT-qPCR. Figure 2E shows that transcripts

using TIS1 have markedly lower expression when compared

with transcripts that use TIS2a or TIS2b for T47D or LNCaP

cells. Yet, despite their differing abundance, similar fold

increases of both variants were observed with androgen and

progesterone treatment.

Identification of Putative HREs in the Promoter Region of
the KLK4 Gene

Given our observations that KLK4 gene expression is

regulated by progesterone and androgens in breast and prostate
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cancer cells, we carried out in silico analyses to identify HREs

within a region encompassing f3 kb of the KLK4 promoter

from TIS2b that may mediate these responses. Using four

different gene analysis programs, we identified two putative

HRES (K4.pPRE and K4.pARE) that have consensus-like half

sites, which could interact directly with class I steroid hor-

mone receptors (androgen, progesterone, mineralocorticoid, and

glucocorticoid receptors; Fig. 3A). The K4.pPRE sequence

(5¶-AGAACAtgagagAGAACA-3¶) consists of a direct repeat

motif that is separated by six nucleotides and is located

2,419 bp upstream of the TIS2b identified here in LNCaP cells

and 397 bp upstream from the previously reported TIS1. The

K4.pARE sequence (5¶-GGTGCAggaGATTGT-3¶), located at

�1005 bp from TIS2b (1017 bp downstream from TIS1), more

closely resembles the classic HRE motif that is traditionally

characterized by a palindromic hexameric repeat sequence that

is separated by three nucleotides.

K4.pARE Binds Indirectly with the Androgen Receptor
Electrophoretic mobility shift assays (EMSA) were carried

out with the K4.pARE to determine if the element bound

to endogenous AR or recombinant AR-DBD. Incubation of

K4.pARE with LNCaP nuclear extracts from cells that were

FIGURE 1. Hormonal regulation of KLK4 in breast and prostate cancer cells. A. Expression of total KLK4, PR, AR , and b2M was assessed in four breast
and seven prostate cell lines using RT-PCR.B. Progesterone regulation of KLK4 in breast cancer (T47D) cells. Cells were treated for 24 h with ethanol (white
columns ) or 10 nmol/L progesterone (black columns ) + 1 Amol/L of the PR antagonist RU486 (gray columns ). The expression of total KLK4 and HSD11B2 , a
positive control for progesterone responsiveness, was determined using RT-qPCR. C. Androgen regulation of KLK4 in prostate cancer (LNCaP) cells. Cells
were treated for 24 h with ethanol (white columns ) or 1 nmol/L of the synthetic androgen, R1881 (black columns ) + 1 Amol/L of the AR antagonist,
bicalutamide (gray columns ). The KLK3/PSA gene was used as a positive control. Relative KLK4 gene expression was also assessed in T47D (D) and
LNCaP (E) cells that were maintained for 4 d in hormone-depleted medium (CSS ) versus cells that were maintained in basal medium with hormones (FBS ).
All data are represented as the fold changes in gene expression over vehicle control (0.1% ethanol) or relative to 18S. Columns, mean from three
independent experiments that were each carried out in duplicate or triplicate; bars, SE. *, P < 0.05, significant difference between treatments.
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treated with R1881 for 12 hours resulted in the formation of two

specific shifts (Fig. 3B). These shifts were also observed in

experiments where cells were incubated with PSA AREI. A

decrease in shift intensity, particularly for the lower shift, in

experiments where cells were incubated with 200- and 400-fold

excess unlabeled K4.pARE suggests that these complexes are

specific (Fig. 3B). To determine whether these shifts may

represent AR/ARE complexes, blocked shift analysis using

1 and 2 Ag of AR antibody was carried out. Incubation of both

the PSA ARE I and the K4.pARE, with increasing amounts of

FIGURE 2. Characterization of the KLK4 promoter. 5¶-RLM-RACE was carried out to identify the predominant KLK4 TIS in (A) prostate (LNCaP ) and (B)
breast (T47D ) cancer cells. M, DNA marker; no tap, negative TAP control. 5¶-RLM-RACE products were f190 and 220 bp for LNCaP and T47D,
respectively. C. KLK4 5¶-untranslated region sequence data showing the TIS (bold, capitalized, and italicized G ) in T47D (TIS2a ) and LNCaP (TIS2b ) cells.
The start of the coding region in exon 2 is shown as ATG (capitalized). A palindromic sequence 5¶-ctgcag-3¶ (underlined ) represents a region that is
statistically overrepresented in 5¶-untranslated regions. The italicized sequence ctcgtctct represents a putative initiator element. D. Diagram of the genomic
structure of the KLK4 gene showing the two potential TISs (TIS1 and TIS2a/b ). Putative ATG start sites for translation (ATG1 and ATG2) and the coding
exons (gray boxes ), which include the alternative exon 1 (1a) are indicated. Primers detecting KLK4 variants that use either TIS1 (K4Ex1QS and
K4Ex2QAS ) or TIS2a/b (K4Ex2QS and K4Ex3QAS ) and the position of the three codons encoding histidine (His ), aspartate (Asp ), and serine (Ser) of the
catalytic triad that are essential for enzymatic activity are indicated. E. Expression of KLK4 TIS-specific variants in LNCaP and T47D cells. Columns, mean of
KLK4 copy numbers relative to 18S from three independent experiments that were each performed in duplicate; bars, SE. Quantitative RT-PCR was carried
out on RNA extracted from cells maintained in either 1 nmol/L R1881, 10 nmol/L progesterone, or vehicle control (EtOH ) for 24 h using TIS-specific primers.
The relative expression of the larger TIS1 variants was subtracted from the total expression of TIS2a/b variants to calculate the absolute relative expression
of TIS2a/b variants.
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AR antibody, decreased the shift intensity for both shifts

(Fig. 3B). The blocking of these shifts by the AR antibody

suggests these complexes may be formed by interaction of the

AR with K4.pARE. The specificity of K4.pARE was further

shown by abrogating the binding of the lower receptor complex

with the AR antibody but not by the nonspecific rabbit IgG

antibody in experiments in which LNCaP cells were treated for

24 hours with 1 nmol/L R1881 (Fig. 3C). Both shifts for

K4.pARE were identical to the PSA ARE I control and further

supports the hypothesis that K4.pARE is forming similar DNA/

receptor complexes to those observed for PSA ARE I. The

differences in shift intensity and blocking patterns between the

two blocking shift experiments likely represent the dynamic

receptor/DNA complexes formed from the different treatment

times and the consequent accessibility of the AR antibody to the

AR. These blocked shifts were also observed using the N-20

AR antibody (Supplementary Fig. S1). However, EMSA

analysis of K4.pARE with purified AR-DBD did not result in

the formation of any high molecular complexes that are

indicative of receptor/DNA complexes, although there was a

clear PSA ARE I/AR-DBD complex formed (Fig. 3D). Further,

competition of the PSA ARE I reactions with increasing

amounts (5- to 40-fold molar excess) of unlabeled K4.pARE

did not result in any observed abrogation of PSA ARE I binding

with the AR-DBD.

K4.pARE Is Not Responsive to Androgens in LNCaP and
22Rv1 Cells

Reporter assays for androgen responsiveness of K4.pARE

were carried out in both LNCaP and 22Rv1 cells as the blocked

shift assays suggest that K4.pARE may be interacting with the

AR in some way, although not directly with the AR-DBD.

Three tandem repeats of the putative K4.pARE and its flanking

sequences were cloned into the pGL3-Promoter vector

(K4.pAREX3-Luc) to enhance the hormonal responsiveness

for this element (Fig. 4A). In this assay, the pGL3-Promoter

was not significantly regulated by R1881 in either LNCaP

(P = 0.074) or 22Rv1 (P = 0.12) cells. For PSA AREIX3-A-

Luc, treatment with R1881 resulted in a 3.9- and 4.1-fold up-

regulation of promoter activity over the vehicle control in 22Rv1

(P = 0.011) and LNCaP cells (P = 0.037), respectively, con-

firming that the cells were appropriately sensitive to androgens

(Fig. 4B). For K4.pAREX3-Luc, there was no difference in

promoter activity in LNCaP or 22Rv1 cells (Fig. 4B).

The Proximal KLK4 Promoter Region Is Not Responsive
to Androgens

Seven deletion luciferase promoter constructs that encom-

pass up to 2.8 kb of the KLK4 promoter from TIS2b were

FIGURE 3. EMSA and blocked shift analyses of K4.pARE. A. Two putative HRE (K4.pPRE and K4.pARE ) sequences that were predicted by in silico
modeling are shown with their positions, �2419 bp and �1005 bp, respectively, relative to TIS2b. K4.pARE was incubated with nuclear proteins that were
extracted from LNCaP cells treated with 1 nmol/L R1881 for 12 h. B. Incubation of K4.pARE with nuclear extracts (NE ) resulted in the formation of two
specific shifts that were also present in lanes that were probed with PSA ARE I. The intensity of these specific shifts (for both the KLK4 and PSA probes) was
partially or completely diminished when molar excess (200�, 400�) unlabeled (Cold ) K4.pARE or 1 and 2 Ag of androgen receptor antibody (AR Ab) was
added to the reactions. C. The specificity of K4.pARE and PSA ARE I shifts are shown by blocking of the lower shift by the AR antibody but not the
nonspecific IgG antibody (IgG Ab) in experiments carried out on nuclear proteins from LNCaP cells treated with 1 nmol/L R1881 for 24 h. D. EMSA was
carried out with 0.2 Ag of purified AR-DBD. A specific shift was only observed in lanes from PSA ARE I/AR-DBD reactions. Competition with increasing
amounts of molar excess (5�–40�) unlabeled K4.pARE did not outcompete binding of PSA ARE I with the AR-DBD. Labeled K4.pARE was also incubated
with increasing amounts (5�–40�) of unlabeled PSA AREI probes.
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generated (Fig. 4C) to identify if other hormone-responsive

regions could be identified and to determine whether K4.pARE

needs to act synergistically with other cis-elements to mediate

the KLK4 gene expression seen at the mRNA level. Androgen

regulation of the KLK4 promoter was assessed in both LNCaP

and 22Rv1 cells. R1881 (1 nmol/L) stimulated promoter activity

for pGL3-Basic was 0.85- and 0.75-fold increased over vehicle

control (0.1% ethanol) in 22Rv1 and LNCaP cells, respectively

(Fig. 4D). Promoter activity for PSA 5.8-A-Luc was 9.7-fold

increased in 22Rv1 cells and 12.2-fold increased in LNCaP cells

after treatment with R1881. However, none of the seven KLK4

promoter constructs transfected in either LNCaP or 22Rv1 cells

(transfected for 6 hours and treated for 24 hours) were

significantly regulated (P < 0.05) by R1881 when compared

with cells that were treated with vehicle control.

The Proximal KLK4 Promoter Is Responsive to
Progesterone

As there was no androgen regulation of the KLK4 promoter

in prostate cancer cells, the focus of the hormonal studies

was shifted to the progesterone responsiveness observed in

T47D cells. Initial analysis was carried out using the K4.898,

K4.2000, and K4.2875 promoter constructs (Fig. 5A). Signif-

icant basal promoter activity was observed for all three

constructs (K4.2875, f4-fold, P < 0.05; K4.2000, f8-fold,

P < 0.05; K4.898,f3-fold, P < 0.05), when compared with the

insert-less pGL3-Basic control (Fig. 5B). There was no

significant increase in promoter activity for the K4.2000 and

K4.898 constructs after cells were treated with 10 nmol/L

progesterone for 24 hours. However, a modest but significant

(f1.2-fold, P < 0.05) increase in K4.2875 promoter activity,

which was comparable with that seen at the mRNA level, was

observed after cells were treated with 10 nmol/L progesterone

(Fig. 5B). Further, a trend of increased transcriptional activity

of K4.2875 was observed in T47D cells that were treated with

increasing amounts of progesterone (Fig. 5C).

The KLK4 Progesterone Response Element Complexes
with the Progesterone Receptor

As the progesterone-induced luciferase data support the

in silico analysis, suggesting that the K4.pPRE may be func-

tional, EMSA analysis was then carried out to assess the direct

FIGURE 4. Androgen re-
sponsiveness of the KLK4
promoter in prostate cancer
cells. Androgen (1 nmol/L
R1881) regulation of the
KLK4 putative ARE was car-
ried out by luciferase reporter
assays using (A) a construct
comprising three tandem cop-
ies of the putative KLK4 ARE
(K4.pARE-Luc ) in (B) both
LNCaP and 22Rv1 cells.
pARE, putative ARE; SV40
prom., SV40 mammalian viral
promoter; Luc, luciferase
gene. C. Diagram of the sev-
en KLK4 promoter constructs
used in luciferase reporter
assays relative to the two
KLK4 TISs. Construct sizes
are relative to TIS2b. D. Anal-
ysis of the androgen (1 nmol/L
R1881) responsiveness of the
KLK4 promoter was carried in
both LNCaP and 22Rv1 cells.
A l l l uc i fe rase data are
expressed as fold androgen-
induced promoter activity over
vehicle control (0.1% ethanol)
and normalized to pGL3-Pro-
moter or pGL3-Basic activity.
Columns, mean from two inde-
pendent experiments (each
carried out in triplicate); bars,
SE. *, P < 0.05, significant
difference between constructs.
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interaction of K4.pPRE with the PR. Two shifts were observed

with a time-specific shift of the upper band seen when the

K4.pPRE was incubated with nuclear extracts from T47D cells

that were treated with 10 nmol/L progesterone over 24 hours

(Fig. 6A). This shift is likely to represent progesterone response

element (PRE)/PR complexes as no shifts were observed for

experiments that used nuclear proteins from the PR-negative

breast cancer cell line MDA-MB-231 (Fig. 6B). Further, addi-

tion of PR but not AR antibodies in blocked shift experi-

ments were able to abrogate binding of the higher molecular

DNA/protein complexes, although no supershift was observed

(Fig. 6C).

The PR Is Recruited to the KLK4 PRE Region
Chromatin immunoprecipitation (ChIP) assays were carried

out to assess the active recruitment of the PR to the KLK4 PRE

promoter region in a more cellular context. Thus, T47D cell

lines were grown in the absence of progesterone for 72 hours

followed by treatment with or without saturating levels

(100 nmol/L) of progesterone for 0 to 24 hours. The PR

antibody effectively immunoprecipitated the progesterone-

responsive region (�2496 to �2283) of the KLK4 promoter in

a manner that was dependent on progesterone treatment

and time (Fig. 7, I). In contrast, the PR antibody failed to

immunoprecipitate a region of the KLK4 promoter that did not

contain K4.pPRE (�2012 to �1839) or the chromatin DNA

from a non–progesterone-responsive gene, b2-microglobulin
(Fig. 7, II and V, respectively). The respective input DNA

controls (Fig. 7, II, IV, and VI) amplified the appropriate product,

indicating the specificity of the PCR. As expected, the genomic

DNA PCR controls were positive for all panels, indicating the

specificity of the primer pairs and validating the PCR.

Discussion
It has long been established that hormones play an important

role in the pathogenesis of breast and prostate cancer.

Consequently, the identification of downstream target genes

with functions that may contribute to neoplasia is an important

area of research to better understand the etiology of these two

cancers. One such family of hormone-target genes are the tissue

FIGURE 5. Progesterone responsiveness of the KLK4 promoter in breast cancer cells. A. Diagram of the KLK4 putative PRE (K4.pPRE) and luciferase
promoter constructs (K4.2875, K4.2000 , and K4.898 ) relative to the coding (white boxes ) and noncoding (black boxes ) regions of the KLK4 gene. K4.pPRE
is indicated at �2400 bp from TIS2b. B. Progesterone-induced luciferase reporter assays were carried out in breast cancer cells (T47D). Luciferase activity
was normalized to the Renilla transfection control. There was no significant difference (P < 0.05) in pGL3-Basic activity in response to progesterone so data is
represented as luciferase activity normalized to pGL3-Basic activity (black columns ). The three KLK4 promoter constructs had significantly higher luciferase
activity in cells that were treated with (gray columns ) and without (white columns ) 10 nmol/L progesterone when compared with pGL3-Basic (*, P < 0.05).
Columns, mean from at least three independent wells; bars, SE. +, P < 0.05, significant difference in promoter activity over vehicle control (0.01% ethanol).
C. Luciferase reporter assay demonstrating that K4.2875 promoter activity increases in T47D cells treated with increasing amounts of progesterone.
Columns, mean from two independent experiments, each carried out in triplicate; bars, SE.
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kallikrein-related proteases (KLK), which are a multigene

family of serine proteases that are highly expressed in many

hormone-dependent cancers (6, 7, 28). The kallikrein 4 gene

(KLK4), a more recently cloned member of the KLK gene

family, has been reported to be regulated by progestins and

androgens in breast and prostate cancer cells, respectively

(10, 15, 16). Although the (patho)physiologic role of KLK4 is

yet to be established, it has been proposed that this gene may be

important in the pathogenesis and progression of hormone-

dependent cancers as it is aberrantly expressed in cancer

cells when compared with benign cells (17, 29-31), and has

known or putative functions that are important in cancer bio-

logy (12-14, 32-34). In this study, we have further characterized

the hormonal regulation of the KLK4 gene in breast and

prostate cancer by interrogating the KLK4 promoter to identify

putative HREs that may mediate this response.

Initial profiling on a panel of breast and prostate cells

showed that KLK4 is only present in breast cells expressing PR

and prostate cells expressing AR , suggesting that progestins and

androgens play an active role in mediating KLK4 gene

expression. Consequently, we further assessed the hormonal

regulation of KLK4 gene expression using quantitative RT-PCR

in breast and prostate cancer cells, particularly as previous

studies have only taken semiquantitative or qualitative

approaches (10, 15, 16). The results from these experiments

show that KLK4 is moderately up-regulated in T47D cells that

were treated with progesterone for 24 hours (f1.38-fold).

In LNCaP cells, KLK4 was also moderately up-regulated

(3.2-fold) in response to androgens. The observed up-regulation

of KLK4 by progesterone and androgens are likely to be

mediated through their cognate receptors as these responses

were attenuated in cells that were treated with hormones and

their associated receptor antagonists. Further, these findings

are consistent with previous studies that report similar up-

regulation of KLK4 mRNA in response to progesterone in

breast cancer cells (8) and androgens in prostate cancer cells

(10, 15). Conversely, the down-regulation of KLK4 gene

expression (4.2-fold for T47D cells and 2.4-fold for LNCaP

cells) after cells were maintained in hormone-depleted medium

further highlights the importance of hormones in mediat-

ing KLK4 expression, despite the apparent modest level of

these responses.

To date, the KLK4 TIS, and consequently the promoter

region of KLK4 , have been ill defined. Early gene character-

ization studies predicted the KLK4 gene to comprise of up to

five exons based on sequencing of EST libraries and/or

comparative exon prediction analyses (8, 10, 11). More

recently, two groups identified two alternative KLK4 TISs that

would result in the expression of one transcript (TIS1 variant)

that would be derived from six exons (9) and an alternative

truncated transcript (TIS2a/b variant) that would be derived

from four exons (15). The biological importance of each variant

has been a source of recent controversy (35, 36). Nevertheless,

our combined 5¶-RACE and RT-qPCR results indicate that

whereas the transcript arising from TIS2a/b is more abundant,

both transcripts are expressed in T47D and LNCaP cells.

Further, both TIS1 and TIS2a/b variants are hormonally

regulated in LNCaP and T47D cells to a similar degree.

Although there are no consensus TATA box within �25 to

�30 bp upstream of TIS2a/b, the promoter region for TIS2a/b

does have a cluster of GC box sites (Sp1 sites, CCCgCCC),

which may play a role in mediating basal KLK4 gene

expression (data not shown). Indeed, a large-scale study of

1,031 genes found that only 32% of promoters harbored a

consensus TATA box at �25 to �40 bp from the TIS (37).

Further, 97% of these 1,031 genes contained a GC box (�74 to

�45 bp from the TIS) and suggests that GC boxes play an

important role in mediating transcription of TATA-less genes.

Indeed, this is supported in the T47D luciferase reporter assays

that showed higher basal activity of the minimal KLK4

promoter construct (K4.898) when compared with the promot-

er-less pGL3-Basic vector.

Classically, the PR, AR, and glucocorticoid receptor

recognizes HREs that comprise of a palindromic hexameric

repeat sequence that is separated by three nucleotides to

mediate target-gene transactivation (38). However, more recent

studies suggest that the second zinc finger of the AR-DBD

plays an important role in the ability of the AR to interact

specifically with HREs that comprise of a direct hexameric

repeat motif as opposed to the classic palindromic sequence

(39-43). Significantly, reduced fertility and development of

FIGURE 6. EMSA and blocked shift analyses of K4.pPRE.A. EMSA of
10 nmol/L progesterone-treated T47D cells over 24 h. Numbers at the top
of the figure, the time in hours for each progesterone treatment; arrows,
the two shifts. Note that the free probe is not shown. B. Control
experiments for PR specificity. EMSA of the K4.pPRE was carried out
using nuclear extracts from PR-positive (T47D ) and PR-negative (MDA-
MB-231 ) cells. Nuclear extracts from MDA-MB-231 cells failed to bind
K4.pPRE. C. EMSA and blocked shift assay of K4.pPRE with PR and AR
antibodies. Arrows denote the shifts and the free probe is shown at the
bottom of the gel.
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male reproductive organs are some of the outcomes for mice

knock-in models that have a mutated AR-DBD, which results in

loss of AR transactivation of AR-selective HREs (44). This

highlights the importance of both the primary structure of the

PR, AR, and glucocorticoid receptor, and the nature of the

HREs within target genes in not only mediating gene

transcription but also in disease pathology such as cancer. It

was thus important to identify HREs within the KLK4

promoter, which may mediate progesterone and androgen up-

regulation of KLK4 , using either receptor-selective or nonse-

lective motifs. Using in silico modeling, we have identified two

consensus-like motifs, one (K4.pARE) located in the promoter

region of TIS2a/b (f1 kb) and another (K4.pPRE) located a

further 1.5 kb upstream. EMSA analyses of K4.pARE resulted

in the formation of two specific shifts that are likely to represent

the formation of K4.pARE/AR complexes (as well as

complexes incorporating other AR coregulators, which may

account for the multiple shifts) as supported by the shifts being

of the same molecular weight as shifts formed in reactions that

were probed with PSA ARE I, and that abrogation of receptor/

DNA complexes were observed in experiments that were

incubated with AR antibodies. The specificity of K4.pARE and

PSA ARE I shifts were further confirmed by the inability of the

nonspecific IgG antibody to block these DNA receptor

complexes. The differences in AR blocking patterns between

experiments using LNCaP nuclear proteins from different

R1881 treatment times also supports the hypothesis (45) that

higher shifts represent higher-order AR/DNA complexes.

However, binding assays of the putative K4.pARE with

purified AR-DBD did not result in the formation of any shifts.

Further, molar excess of K4.pARE was not able to outcompete

binding of PSA AREI/AR-DBD complexes. It is possible that

binding of the AR to K4.pARE may be ligand dependent.

Indeed, the AR is ligand bound and dimerized when bound to

the promoters of target genes (46). Moreover, formation of

K4.pARE/AR complexes may require the association of other

AR coregulators to permit the formation of energetically stable

complexes. Finally, it is possible that K4.pARE is interacting

indirectly with the AR through other AR coregulators.

To address these issues, luciferase reporter assays were

carried out to assess if this element is able to mediate androgen-

induced transactivation in prostate cancer cells. However,

luciferase reporter assays using three tandem copies of

K4.pARE (to enhance any potential signal) showed that this

element was not responsive to androgens in either LNCaP or

22Rv1 prostate cancer cells. Luciferase reporter assays were

then carried out on seven deletion promoter constructs spanning

up to 2.8 kb of the KLK4 promoter from TIS2b (853 bp from

TIS1) to assess if androgen regulation of K4.pARE requires

interaction with other cis-elements and to identify other

potential HREs using a functional approach. However,

androgen regulation experiments carried out on all KLK4

promoter constructs in both LNCaP and 22Rv1 cells showed

that the 2.8 kb of the KLK4 promoter region is not responsive to

androgens. Given our observations in the blocked shift

experiments using AR antibodies for K4.pARE, these promoter

assays support our hypothesis that this element is interacting

indirectly with the AR. According to the androgen receptor

mutation database,1 the AR has been found to interact with up

to 72 coregulators, some of which interact directly with DNA

FIGURE 7. ChIP assay for the recruitment of the PR to the KLK4 promoter. To the left of this figure are the schematic diagrams for the regions 5¶ of the
TIS that were amplified for the KLK4 (I, �2496 to �2238 bp; III, �2012 to �1839 bp) and b2-microglobulin (V, �290 to �62 bp) genes. Top, the region of the
KLK4 promoter that contains a potential PRE (�2496 to �2283 bp). Middle, a region of the KLK4 promoter that does not contain a PRE (�2021 to �1839
bp). Bottom, a promoter region of a non–progesterone-responsive gene, b2-microglobulin (Beta2 ; �290 to �62 bp). II, IV, and VI are control samples that
were assayed by PCR before the initial immunoprecipitation step and show that the input DNA contains the reference gene. I, III, and VI represent the PCR of
each of the regions given schematically to the left of the gel following immunoprecipitation. Time points for analysis of 0, 15, 30, 45, 60 min and 2, 4, and
24 h are indicated at the top of panel. To the far left of the panels are the negative controls where no DNA was added to the PCR and to the far right are the
positive controls of untreated genomic DNA (gDNA ) from T47D cell lines.

1 http://www.androgendb.mcgill.ca/
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(47, 48). Alternatively, K4.pARE may mediate regulation

through synergistic interaction with other distal HREs in the

KLK4 promoter, as has been reported for other androgen-

responsive promoters (19). The androgen regulation of the

KLK4 PRE was not pursued given the lack of androgen

response in the K4.2875 luciferase promoter construct (which

contains the KLK4 PRE motif).

Given the lack of androgen responsiveness of the KLK4

promoter, further in vitro analyses were focused on the

progesterone regulation of K4.pPRE and the KLK4 promoter

in breast cancer cells. The EMSA analysis suggests that

K4.pPRE is interacting with the PR as shown by the formation

of a higher molecular weight shift in experiments that used

nuclear proteins from T47D cells treated with progester-

one. Further, binding of K4.pPRE/receptor complex was

abrogated upon addition of PR antibodies in blocked shift

experiments, supporting our hypothesis that these shifts

represent PRE/PR complexes. To further characterize the

K4.pPRE element and flanking sequences, progesterone-

induced luciferase reporter assays were then performed in

T47D cells using three promoter constructs, two (K4.2000 and

K4.898) that did not harbor K4.pPRE and one (K4.2875) that

did. Consistent with the location of the K4.pPRE, only the

K4.2875 luciferase construct was significantly up-regulated

(f1.4-fold, P = 0.002) by progesterone. Although the K4.2875

construct showed moderate progesterone response, this was

consistent with the marginal response observed at the mRNA

level using quantitative RT-qPCR, and similar to other

progesterone-responsive promoters in T47D cells, such as c-

myc (f3-fold), an important regulator of breast cell proli-

feration, differentiation, transformation, and apoptosis (49).

Other HREs, such as those found in the PSA promoter (ARE I),

have also been shown to have minimal sensitivity to androgens

on its own (24, 25). Like the cooperative regulation of PSA

AREs in androgen-mediated gene expression (19, 20), the

KLK4 PRE may act synergistically with other enhancer or

intronic PREs. The ChIP data support our hypothesis that this

element is a bona fide HRE as the PR was actively recruited to

the KLK4 promoter region, which harbors the PRE element.

Further, recruitment of the PR to the KLK4 PRE region seems

to occur in a time-dependent manner that is consistent with

other nuclear hormone receptor recruitment studies. For

example, studies on the estrogen receptor a (ERa) and the

cathepsin D promoter have suggested that the cyclic recruit-

ment of ER to target promoters may represent a mechanism

that facilitates continuous monitoring of the external environ-

ment (50).

In conclusion, we have quantified and confirmed previous

reports that KLK4 is exquisitely regulated by progesterone and

androgens in breast and prostate cancer cells, respectively. We

show that both KLK4 variants are similarly hormone regulated

despite differences in their abundance. We have also shown that

the androgen-responsive region of KLK4 is unlikely to lie

within the f2.8 kb promoter region from TIS2a/b investigated

in this study, although the progesterone regulation of KLK4

gene expression in breast cancer cells is likely mediated, at least

in part, by the PRE identified at �2419 bp in the KLK4

promoter. These studies lay the foundation for future analysis of

the hormonal regulation of the KLK4 promoter.

Materials and Methods
Steroids and Antibodies

Progesterone was obtained from Sigma Chemical Co., and

the synthetic androgen R1881 was from Perkin-Elmer. The PR

antagonist (RU486) was obtained from Sigma, and the AR

antagonist (bicalutamide) was a gift from Prof. Wayne Tilley

(Hanson Institute, Adelaide, Australia). The PR (PR-C19) and

AR (C-19) antibodies used in EMSA and ChIP experiments

were obtained from Santa Cruz Biotechnology. The rabbit IgG

antibody was obtained from Zymed Laboratories.

Cell Culture
All cell lines used were obtained from American Type Culture

Collection. Cells were maintained in either RPMI 1640 (LNCaP,

22Rv1, DU145, and PC-3) or phenol-red free DMEM/F12

(MCF7, MDA-MB-231, and T47D) medium (Invitrogen),

supplemented with 10% FCS (Invitrogen) and 50 units/mL

penicillin G and 50 Ag/mL streptomycin (CSL Biosciences).

RWPE-1 and RWPE-2 cells were grown in keratinocyte serum-

free medium with 50 Ag/mL bovine pituitary extract and 5 ng/mL

recombinant human epidermal growth factor (Invitrogen). MDA-

PCa-2B cells were maintained in BRFF-HPC1 medium from

AthenaES (Sapphire Biosciences). MCF-10A cells were main-

tained in DMEM/F12 medium (Invitrogen) supplemented

with 5% horse serum (Invitrogen), 10 Ag/mL insulin (Sigma),

20 ng/mL epidermal growth factor (Invitrogen), 100 ng/mL

cholera enterotoxin (Sigma), 0.5 Ag/mL hydrocortisone (Sigma),

and 100 units/mL penicillin/streptomycin. For steroid treatment

experiments, cells were cultured until f70% confluent and then

maintained in 2% charcoal-stripped serum (HyClone) for

48 h followed by addition of steroid hormones (1 nmol/L R1881,

10 nmol/L progesterone) for an additional 24 h. In antagonist

experiments, cells were pretreated with either 1 Amol/L bicaluta-

mide or 1 Amol/L RU486 for 2 h before the addition of hormones

and antagonists. For hormone starvation experiments, cells were

maintained in phenol red–free medium containing 10% charcoal-

stripped serum for 4 d before harvesting and RNA extraction.

RNA Extraction, cDNA Synthesis, and RT-PCR
Total RNA was extracted using the TRI Reagent (Sigma)

according to the manufacturer’s protocol. RNAwas then treated

with DNaseI (Roche Diagnostics), purified through an RNeasy

column (Qiagen) and electrophoresed to determine the integrity

of the RNA before use in 5¶-RACE experiments. Complemen-

tary DNA (cDNA) was synthesized from 2 Ag of total RNA

using random hexamers (Proligo) and SuperScript III Reverse

Transcriptase (Invitrogen). RT-PCR was carried out on a panel

of four breast cell lines (T47D, MCF7, MCF-10A, MDA-MB-

231) and seven prostate cell lines (LNCaP, 22Rv1, MDA-PCa-

2b, RWPE-1, RWPE-2, DU145, PC-3) using primers targeting

the KLK4 (K4Ex2QS: 5¶-ggcactggtcatggaaaacga-3¶ and

K4Ex3QAS: 5¶-tcaagactgtgcaggcccagcc-3¶), PR (F: 5¶-gattca-
gaagccagccagag-3¶, R: 5¶-tgcctctcgcctagttgatt-3¶), AR (F: 5¶-atc-
aggggcgaagtagagcatc-3¶, R: 5¶-agccccactgaggggacaacc-3¶;
ref. 51), and b2-microglobulin (h2M-F: 5¶-tgaattgctatgtgtct-
gggt-3¶, h2M-R: 5¶-cctccatgatgctgcttacat-3¶) genes. RT-PCR

was performed using PCR annealing temperatures of 60jC for

KLK4, AR and PR , and 55jC for b2M .
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Quantitative RT-PCR
KLK4 , 18S rRNA, prostate-specific antigen (PSA), and 11h-

hydroxysteroid dehydrogenase type 2 enzyme (HSD11B2)

transcripts were analyzed by RT-qPCR in 20 AL reactions with

1� Sybr Green (ABI, Applied Biosystems), 150 nmol/L of

forward and reverse primers (see below), and the relevant

cDNA (1 AL of a 1:20 dilution for KLK4, PSA , and HSD11B2

and 1:100 dilution for 18S). PCR was done on an ABI Prism

7000 sequence detection system (Applied Biosystems) and

cDNA was quantitated using known DNA concentration

standards. Gene expression was calculated as the amount of

KLK4, PSA , and HSD11B2 cDNA relative to 18S cDNA copy

number, and data are represented as the fold change in

hormone-induced gene expression over vehicle control (0.1%

ethanol). The primer sequences used in the RT-qPCR analyses

are as follows: KLK4 (K4Ex2QS and K4Ex3QAS from above),

18S (18S-F: 5¶-ttcggaactgaggccatgat-3¶; 18S-R: 5¶-cgaacctcc-
gactttcg-3¶), PSA (PSA-F: 5¶-agtgcgagaagcattcccaac-3¶; PSA-R:
5¶-ccagcaagatcacgcttttgtt-3¶), and HSD11B2 (HSD11B2-F:

5¶-tggcgctactcatggacacat-3¶; HSD11B2-R: 5¶-tttcccactgacc-
cacgtttc-3¶).

Exon-specific RT-qPCR was carried out using primers

K4Ex1QS and K4Ex2QAS and K4Ex2QS and K4Ex3QAS to

detect KLK4 variants that use either TIS1 or TIS2a/b (29).

Standard curves of known copy number using amplicons

cloned into pGEMT were used to quantify gene expression.

Exon 1-2 values represent the TIS1 variant, whereas the

expression of TIS2a/b is defined as (exon 2-3)-(exon1-2)

because exons 2 and 3 are present in all KLK4 variants. A two-

tailed Student’s t test was used to calculate statistical

significance from three independent experiments that were

each carried out in duplicate or triplicate.

KLK4 TIS Mapping
To identify the TIS, RNA ligase–mediated RACE (First-

Choice RLM-RACE kit, Ambion) was carried out as per the

manufacturer’s instructions, except that Superscript II (instead

of AMV) reverse transcriptase was used for cDNA synthesis.

The first- and second-round KLK4-specific PCR primers

used were 5¶-agcccgatggtgtaggagtt-3¶ and 5¶-cgatggtgtag-
gagttctggaaacagtg-3¶, respectively. PCR cycling variables

were 94jC for 5 min followed by 40 cycles of 94jC for

30 s, 55jC or 62jC for 30 s (first- and second-round PCR,

respectively), 72jC for 30 s, and a final 72jC extension for

10 min. PCR amplicons were cloned into pGEMT easy vec-

tor (Promega) and clones were sequenced using the ABI

PRISM Dye Terminator 2 protocol (Applied Biosystems) at the

Australia Genome Research Facility, University of Queensland,

Brisbane, Australia.

In silico Analysis
Four independent gene analysis programs, Cister, SigScan,

MatInspector (52-54), and ConSite,2 were used to identify

putative HREs encompassing f3 kb of the KLK4 promoter.

Extraction of Soluble Nuclear Protein Fractions
Soluble nuclear protein fractions were isolated from

progesterone-treated T47D cells and R1881-treated LNCaP

and 22Rv1 cells using the NE-PER Nuclear and Cytoplasmic

Extraction Reagents (Pierce Biotechnology) according to the

manufacturer’s instructions. Protein concentrations were quan-

tified using the bicinchoninic acid protein assay (Pierce).

EMSA and Blocked Shift Assay
Nucleotide sequences encompassing a putative PRE

(K4.pPRE) and a putative ARE (K4.pARE) in the KLK4

promoter were synthesized (Proligo) with their complements.

The forward sequences for K4.pPRE (5¶-aaaaagagagaaAGAA-
CATgagagAGAACAggagagaatgag-3¶) and K4.pARE (5¶-tcg-
aaagccgagGGTGCAggaGATTGTGcttcc-3¶) were end labeled

with biotin (Pierce), then annealed to their labeled complemen-

tary oligomers. The putative HREs are underlined and the

half sites are capitalized. PSA ARE I-A DNA probes

(5¶-tcgacttgcAGAACAgcaAGTACTagctg-3) were also used in

EMSA to serve as a positive control for interaction with the

AR. Binding reactions were carried out using 5 Ag of nuclear

proteins or 0.2 Ag of purified androgen receptor DNA binding

domain (AR-DBD; ref. 45) with the LightShift Chemilumines-

cent EMSA kit (Pierce) as instructed. Blocked shift experiments

were done using 1 or 2 Ag of either PR antibody (PR-C19) or

AR antibody (C-19). PR and AR antibodies were incubated

with nuclear proteins for 24 h at 4jC before addition to the

labeled K4.pPRE or K4.pARE oligomer. Nuclear extracts from

the PR-negative breast cancer cell line, MDA-MB-231, was

used as a negative control to assess binding specificity in PR

experiments. Controls using molar excess of unlabeled DNA

probes were also included in EMSA analyses to assess for

specificity of AR shifts.

KLK4 Reporter Constructs
A bacterial artificial chromosome clone (BC85745) and

Cosmid clone (R28781; Lawrence Livermore Laboratory) were

both used as template to generate seven deletion constructs

encompassing 2,875 bp of the KLK4 promoter. XhoI and

HindIII restriction sites were added to the primers to facilitate

orientation-specific cloning into the pGL3-Basic vector

(Promega). Forward primer sequences were K4.170, 5¶-tgt-
gctcgagctgctcctgaacctctgacc-3¶; K4.445, 5¶-cacctcgagctaccct-
gaatccctgacca-3¶; K4.688, 5¶-cacctcgagaaaacggtgttttggtgtgc-3¶;
K4.1298, 5¶-cacctcgaggtgtgtgtgtctgaccgtgct-3¶; K4.898, 5¶-ctc-
gagcaaacggtgttttggtgtg-3¶; K4.2000, 5¶-ctcgagagcagtggaatccag-
gagc-3¶ and K4.2875, 5¶-cacaagcttcagtcctcgccgtttatgat-3¶, and

PCR was carried out using a common reverse primer

(K4.Anchor, 5¶-aagcttcagtcctcgccgtttatgat-3¶). The KLK4 pro-

moter inserts were amplified using the ‘‘proofreading’’ enzyme

Pfx or high-fidelity platinum Taq (Invitrogen) DNA polymerase

and subcloned into the pGEM-T Easy (Promega) vector before

cloning into pGL3-Basic (Promega). All constructs were

sequenced to verify their sequence fidelity as described above.

KLK4 luciferase promoter constructs are designated in Results

according to their corresponding forward primer name.

Oligonucleotides encoding three tandem copies of a puta-

tive ARE in the KLK4 promoter (KLK4.pARE) and its native2 http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite
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flanking sequences were synthesized with BglII and KpnI

restriction site overhangs to facilitate orientation-specific

ligation into the multiple cloning site of the luciferase pGL3-

Promoter vector (Promega) and designated as KLK4.pAREX3-

sense (5¶-ccgagGGTGCAggaGATTGTgcttcccgagGGTGCAg-
gaGATTGTgcttcccgagGGTGCAggaGATTGTgcttcca-3¶) and

KLK4.pAREX3-antisense (5¶-gatctggaagcACAATCtccTG-
CACCctcgggaagcACAATCtccTGCACCctcgggaagcA-

CAATCtccTGCACCctcgggtac-3¶). The putative AREs are

underlined and the hexameric half sites are capitalized. The

oligonucleotides were annealed together by denaturing at 95jC
for 2 min and left at room temperature for 1 h before ligation

with the pGL3-Promoter vector. The KLK4.pARE luciferase

reporter construct is designated as K4.pAREX3-Luc. The PSA

5.8-A-Luc and PSA AREIX3A-Luc promoter constructs (45)

were also used in luciferase reporter assays to serve as a

positive control for androgen response.

Transfection and Luciferase Reporter Assays
Cells were seeded in 24-well plates at a density off1 � 105

per well and the culture medium was changed to phenol

red–free DMEM (T47D) or RPMI 1640 (LNCaP and 22Rv1),

2% charcoal-stripped FCS for 48 hours before transfection.

Transient transfection was carried out with 0.5 Ag of either

pGL3-Basic, pGL3-Promoter, PSA promoter construct, or

KLK4 promoter construct using Opti-MEM I reduced Serum

Medium (Invitrogen) and 3 AL of Lipofectamine 2000 per

well (Invitrogen). Renilla (0.3 Ag) was used as an internal

control to monitor for transfection efficiency. After 6 h of

transfection, cells were treated with either vehicle control

(0.1% ethanol), 10 nmol/L progesterone (T47D), or 1 nmol/L

R1881 (LNCaP and 22Rv1) for a further 24 h. Luciferase

activity was measured using the Dual-Luciferase Reporter

Assay System (Promega) on a PolarStar plate reader (BMG,

Labtech). Data are expressed as Luciferase activity normalized

to Renilla activity and represented as the SE from three

independent experiments that were each carried out in triplicate,

unless otherwise stated.

ChIP Assay
The ChIP assay was carried out on progesterone-treated

T47D cells as previously described (19). Immunoprecipitation

of PR/DNA complexes was done using 2 Ag of PR-19 antibody.
All DNA samples were first purified (High Pure, Roche), and

PCR was done using primers that are (a) located proximal to

the K4.pPRE (5¶-ggaaatttgctggagaagca-3¶ and 5¶-tgcctgtatctct-
cattttctc-3¶); (b) within the KLK4 promoter but not proximal to

the K4.pPRE (5¶-gcctgagagagttgagctgg-3 and 5¶-agaaggcaca-
gaggctgagaa-3¶), and (c) in a non–progesterone-regulated

promoter (b2-microglobulin; 5¶-gccgatgtacagacagcaaa-3¶ and

5¶-tgctgtcagcttcagga atg-3¶). PCR was performed in the linear

range of amplification. The variables were as follows: 94jC for

5 min, then 30 cycles of 94jC for 30 s, 57jC for 30 s, and 72jC
for 30 s followed by a final 10 min, 72jC extension.
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